Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 160(1-2): 25-32, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22321573

RESUMO

A number of bacteria can use toxic compounds as carbon sources and have developed complex regulatory networks to protect themselves from the toxic effects of these compounds as well as to benefit from their nutritious properties. As a model system we have studied the responses of Pseudomonas putida strains to toluene. Although this compound is highly toxic, several strains are able to use it for growth. Particular emphasis was given to the responses in the context of taxis, resistance and toluene catabolism. P. putida strains analysed showed chemotactic movements towards toluene. Strain DOT-T1E was characterised by an extreme form of chemotaxis, termed hyperchemotaxis, which is mediated by the McpT chemoreceptor encoded by plasmid pGRT1. Close McpT homologs are found in a number of other plasmids encoding degradation pathways of toxic compounds. The pGRT1 plasmid harbours also the genes for the TtgGHI efflux pump which was identified as the primary determinant for the resistance of strain DOT-T1E towards toluene. Pump expression is controlled by the TtgV repressor in response to a wide range of different mono- and biaromatic compounds. Strain DOT-T1E is able to degrade toluene, benzene and ethylbenzene via the toluene dioxygenase (TOD) pathway. The expression of the pathway operon is controlled by the TodS/T two component system. The sensor kinase TodS recognizes toluene with nanomolar affinity, which in turn triggers an increase in its autophosphorylation and consequently transcriptional activation. Data suggest that transcriptional activation of the TOD pathway occurs at very low toluene concentrations whereas TtgV mediated induction of pump expression sets in as the toluene concentration further increases.


Assuntos
Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/metabolismo , Tolueno/metabolismo , Tolueno/toxicidade , Quimiotaxia/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Fosforilação , Plasmídeos , Pseudomonas putida/genética , Transdução de Sinais
2.
J Bacteriol ; 192(8): 2169-81, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20139187

RESUMO

Pseudomonas putida DOT-T1E was used as a model to develop a "phenomics" platform to investigate the ability of P. putida to grow using different carbon, nitrogen, and sulfur sources and in the presence of stress molecules. Results for growth of wild-type DOT-T1E on 90 different carbon sources revealed the existence of a number of previously uncharted catabolic pathways for compounds such as salicylate, quinate, phenylethanol, gallate, and hexanoate, among others. Subsequent screening on the subset of compounds on which wild-type DOT-TIE could grow with four knockout strains in the global regulatory genes Deltacrc, Deltacrp, DeltacyoB, and DeltaptsN allowed analysis of the global response to nutrient supply and stress. The data revealed that most global regulator mutants could grow in a wide variety of substrates, indicating that metabolic fluxes are physiologically balanced. It was found that the Crc mutant did not differ much from the wild-type regarding the use of carbon sources. However, certain pathways are under the preferential control of one global regulator, i.e., metabolism of succinate and d-fructose is influenced by CyoB, and l-arginine is influenced by PtsN. Other pathways can be influenced by more than one global regulator; i.e., l-valine catabolism can be influenced by CyoB and Crp (cyclic AMP receptor protein) while phenylethylamine is affected by Crp, CyoB, and PtsN. These results emphasize the cross talk required in order to ensure proper growth and survival. With respect to N sources, DOT-T1E can use a wide variety of inorganic and organic nitrogen sources. As with the carbon sources, more than one global regulator affected growth with some nitrogen sources; for instance, growth with nucleotides, dipeptides, d-amino acids, and ethanolamine is influenced by Crp, CyoB, and PtsN. A surprising finding was that the Crp mutant was unable to flourish on ammonium. Results for assayed sulfur sources revealed that CyoB controls multiple points in methionine/cysteine catabolism while PtsN and Crc are needed for N-acetyl-l-cysteamine utilization. Growth of global regulator mutants was also influenced by stressors of different types (antibiotics, oxidative agents, and metals). Overall and in combination with results for growth in the presence of various stressors, these phenomics assays provide multifaceted insights into the complex decision-making process involved in nutrient supply, optimization, and survival.


Assuntos
Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caproatos/metabolismo , Carbono/metabolismo , Frutose/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenetilaminas/metabolismo , Fenótipo , Álcool Feniletílico/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Compostos de Amônio Quaternário/metabolismo , Ácido Quínico/metabolismo , Salicilatos/metabolismo , Ácido Succínico/metabolismo , Enxofre/metabolismo , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...